

The Radio Amateur Satellite Corporation



# AMSAT North America A status Report

### Presented by Richard M. Hambly, W2GPS AMSAT President

AMSAT-DC Meeting and Space Seminar www.patkilroy.com/amsat-dc April 8, 2006

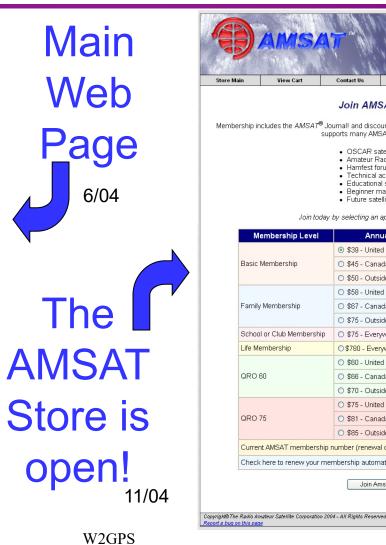
Historical Electronics Museum 1745 West Nursery Road, Linthicum MD 21090 In Pioneer Hall, <u>www.hem-usa.org</u>

W2GPS



### **AMSAT-NA Presentation**




- Introduction to Satellites
- AMSAT-NA Today
- Today's Satellites, especially
  - » AMSAT Oscar-51 ("Echo")
  - » SuitSat
- What's Next?
  - » Phase 3E
  - » Eagle satellites
- AMSAT Needs Your Help!
- 2006 AMSAT Space Symposium
   When in doubt see AMSAT's new Web site at www.amsat.org



### AMSAT's New Web Site www.amsat.org







a bug on this page

| <b>!</b>   | amsa                 |                                                                                                                                                                                                                                                              | 850 Sligo Ave. Su<br>Silver Spring, MD<br>1-888-322-67 |
|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| ain        | View Cart            | Contact Us                                                                                                                                                                                                                                                   | Launch                                                 |
| arahin ing | sludes the AMCA7® Is | Join AMSAT Today!                                                                                                                                                                                                                                            | mode through the AMCAT store. It al                    |
|            |                      | ports many AMSAT activities includi<br>OSCAR satellite operations!<br>Amateur Radio on the ISS!<br>Hamfest forums!<br>Technical achievement awards<br>Educational support!<br>Beginner materials!<br>Future satellites!<br>by selecting an appropriate membe | sl                                                     |
| Me         | mbership Level       | Annual Dues                                                                                                                                                                                                                                                  | Free Gift                                              |
| Basic N    | fembership           | <ul> <li>\$39 - United States</li> <li>\$45 - Canada/Mexico</li> </ul>                                                                                                                                                                                       | _                                                      |
|            |                      | <ul> <li>\$50 - Outside North America</li> <li>\$58 - United States</li> </ul>                                                                                                                                                                               | _                                                      |
| Family     | Membership           | <ul> <li>\$67 - Canada/Mexico</li> <li>\$75 - Outside North America</li> </ul>                                                                                                                                                                               | <ul> <li>Satellite Frequency Chart</li> </ul>          |
| School     | or Club Membership   | O \$75 - Everywhere                                                                                                                                                                                                                                          | _                                                      |
|            | mbership             | O\$780 - Everywhere                                                                                                                                                                                                                                          | _                                                      |
|            |                      | ○ \$60 - United States                                                                                                                                                                                                                                       |                                                        |
| QRO 6      | í0                   | \$66 - Canada/Mexico                                                                                                                                                                                                                                         | <ul> <li>AMSAT Journal CD</li> <li>or</li> </ul>       |
|            |                      | ○ \$70 - Outside North America                                                                                                                                                                                                                               | OInstantTrack                                          |
|            |                      | ○ \$75 - United States                                                                                                                                                                                                                                       |                                                        |
| QRO 7      | 5                    | O \$81 - Canada/Mexico                                                                                                                                                                                                                                       | O SatPC32                                              |
|            |                      | \$85 - Outside North America                                                                                                                                                                                                                                 |                                                        |
| Current    | AMSAT membership     | number (renewal only):                                                                                                                                                                                                                                       |                                                        |
|            |                      | mbership automatically each year.                                                                                                                                                                                                                            | Automatic Renewal                                      |
|            |                      |                                                                                                                                                                                                                                                              |                                                        |



### What is an Amateur Satellite?

Excerpted with permission from Emily Clarke N1DID (ex W0EEC)

- In the late 1950's, Project OSCAR was formed to put amateur radio equipment in space
- An OSCAR is an Orbiting Satellite Carrying Amateur Radio
- Built for non-commercial purposes
- OSCAR-1 Launched in 1961 carried a beacon
- Project OSCAR also launched OSCAR-III the first "repeater" in space (in band 2m repeater)



Chuck Towns K6LFH in his garage with OSCAR-II

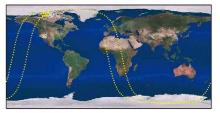

 AMSAT formed in 1969 to take the amateur satellite effort worldwide



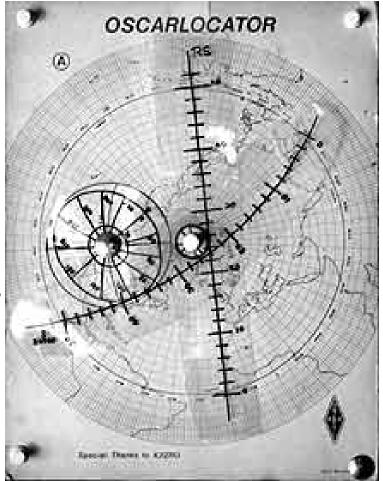
### So what should I know about OSCARs?

Excerpted with permission from Emily Clarke N1DID (ex W0EEC)

- Amateur satellites are built by volunteers.
- OSCARs are space qualified vehicles and stand up to long duration space flights.
- Builders need support (plug if you like this presentation please give AMSAT a donation)




- Satellite operations can be frustrating and JAS-2 (Fuji-OSCAR 29) gratifying. The more you know, the better the experience.
- Most answers are on the AMSAT website and if they aren't, let us know.
- AMSAT works hard to build up "user services." Volunteers called Area Coordinators will help anyone who asks.


Current Position of AO-51 Fri, 20 Jan 2005 18:31:21 GMT (10:31:21 local time) Current Location: 110.5W 72:5N



### Satellite Tracking



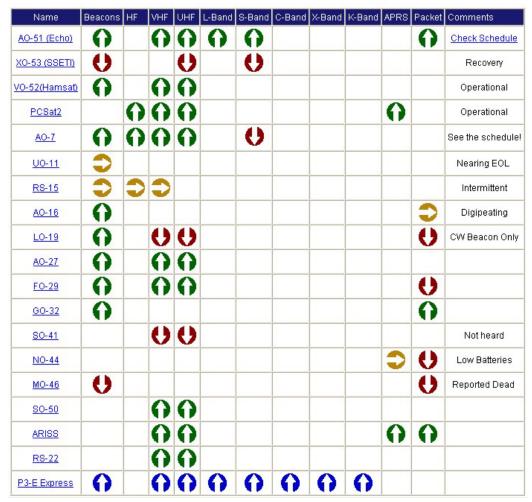
- "In the good old days..." There was the OSCARLocator, a manual tracking system.
- OSCARLocator plotted the satellite location based on equator crossing times.
- By 1978 there was *Orbit* and by 1980
   *QuickTrak*, programs written in Basic that ran on several computers.
- Now we have complex graphical programs to track satellites, control rigs, handle
   Doppler correction and control antenna pointing.





### Where do I transmit and receive?

Excerpted with permission from Emily Clarke N1DID (ex W0EEC)


|          | -                           |                  |           |                                        |
|----------|-----------------------------|------------------|-----------|----------------------------------------|
| HF Bands | 29.300 – 29.500             | 200 KHz          | Primary   | Uplink & Downlink                      |
| V Band   | 145.800 – 146.000           | 200 KHz          | Primary   | Uplink & Downlink                      |
| U Band   | 435.000 - 438.000           | 3 MHz            | Secondary | Uplink & Downlink                      |
| L Band   | 1260 – 1270                 | 10 MHz           | Secondary |                                        |
| S Band   | 2400 – 2450<br>3400 – 3410* | 10 MHz<br>10 MHz | Secondary | Uplink & Downlink<br>Uplink & Downlink |
| C Band   | 5650 - 5670<br>5830 - 5850  | 20 MHz<br>20 MHz | Secondary | Uplink Only<br>Downlink Only           |
| X Band   | 10.45 – 10.5 GHz            | 50 MHz           | Secondary | Uplink & Downlink                      |
| K Band   | 24.0 – 24.05 GHz            | 50 MHz           | Primary   | Uplink & Downlink                      |
| Q Band   | 47.0 – 47.2 GHz             | 200 MHz          | Primary   | Uplink & Downlink                      |
| W Band   | 75.5 – 76.0 GHz             | 500 MHz          | Primary   | Uplink & Downlink                      |



### OSCAR Satellite Status Summary As of 10-May-2005



OSCAR Satellite Status Summary As of 18 January, 2006



Operational

- Semi-Operational
- Non-Operational
- Future Launch



### Amateur Satellites = Amateur Science



| 1970 | First use of passive magnetic stabilization                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1972 | Codestore (CW Store and Forward) Message System)                                                                                                    |
| 1372 | First satellite-to-satellite relay of communications (See OSCAR 7).                                                                                 |
|      | Battery Charge Regulator, Analog Store and Forward of Medical Data,                                                                                 |
| 1974 | Synthetic High Efficiency Power Amplifier (HELAPS), SARSAT                                                                                          |
|      | First satellite-to-satellite relay of communications (See OSCAR 6)                                                                                  |
| 1984 | Imaging, Dust Impact Detectors, Geiger Counters, Digital Communications                                                                             |
| 1990 | Packet Radio, 9.6K Data Rate, Imaging, Digital Store and Forwarding                                                                                 |
| 1992 | Wide and Narrow Imaging, Cosmic Ray detection, radiation dose monitor                                                                               |
| 1993 | 2.4GHz S-Band Transponder                                                                                                                           |
| 1993 | Imaging, IR Sensor Experiment                                                                                                                       |
| 1993 | 38k4 Digital Link, GPS Experiment, Star Sensor, Cosmic Ray Detection, DSP                                                                           |
| 1998 | Direct Sequence Spread Spectrum                                                                                                                     |
| 1999 | 1 MBISec Digital, Viterbi encoding                                                                                                                  |
| 2000 | First Automatic Launcher (6 Picosatellites)                                                                                                         |
| 2000 | Space Plasma Experiment                                                                                                                             |
| 2000 | NASA GPS experiment                                                                                                                                 |
| 2001 | Solar Cell and Mirror Experiment                                                                                                                    |
| 2001 | Tunneling Horizon Detector (JPUStanford), Digital Camera                                                                                            |
| 2004 | Simultaneous Voice and High Speed Data                                                                                                              |
| 2005 | Cold Gas Attitude thrusters, High Resolution Color Imaging, Cubesat Launcher                                                                        |
|      | 1972<br>1974<br>1984<br>1990<br>1992<br>1993<br>1993<br>1993<br>1993<br>1993<br>1993<br>2000<br>2000<br>2000<br>2000<br>2000<br>2001<br>2001<br>200 |



# **Emergency Communications**



- Existing AMSAT satellites are less than practical for large scale disasters:
  - » Weak signals from HEO satellites
  - » Short duration of a LEO pass
  - » Operation: Antenna steering, Doppler correction, etc.
- AMSAT successes: See <u>http://spaceflight.nasa.gov/station/reference/radio/amsat.html</u>
  - » OSCAR satellites have also been used to transmit medical data.
  - » Were employed in early tests of the concept that led to the joint US/Soviet Search And Rescue Satellite, or SARSat, system.
  - » Amateur satellites have also proven useful in a variety of emergencies from hurricanes to earthquakes.
- AMSAT/ARISS
  - » Ham Radio was one of the first communications sources for the Mir crew when the Progress collision occurred.
  - » Provided backup comm on the Shuttle during unplanned TDRS outages.
  - » NASA considers us to be an emergency backup on ISS....specifically because of what happened on Mir.



### The "New" AMSAT



- Strategic Planning
  - » Begun February 2004
    - Discovery process, the "State Of The World"
    - Decision stage, "AMSAT in 45 Seconds"
    - Ten Stakeholder Questions
  - » Results  $\rightarrow$  Mission and Vision statements
  - » Biweekly teleconferences
- Tactical Planning
  - It is the responsibility of AMSAT's officers to implement the Board's strategic planning directives.
  - » In October 2004 we changed AMSAT's executive organization
  - » Fewer Officers and a new emphasis on teamwork and cooperation.

- Who are you?
- What do you do?
- Who will care?
- Why will they care?
- How many will care?
- How do you get to those who do?
- How will you "make" money?
- How are you unique and how will you defend your space?
- Do you have the team to pull it off?
- How much money do you need and where does it take you?



AMSAT's Strategic Plan Mission Statement



AMSAT is a non-profit volunteer organization which designs, builds and operates experimental satellites and promotes space education. We work in partnership with government, industry, educational institutions and fellow amateur radio societies. We encourage technical and scientific innovation, and promote the training and development of skilled satellite and ground system designers and operators.



AMSAT's Strategic Plan Vision Statement



Our Vision is to deploy high earth orbit satellite systems that offer daily coverage by 2009 and continuous coverage by 2012. AMSAT will continue active participation in human space missions and support a stream of LEO satellites developed in cooperation with the educational community and other amateur satellite groups.

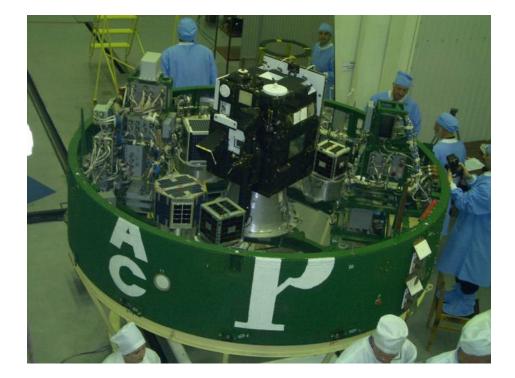


Tom Clark W3IWI, Gerald Youngblood AC5OG and Bruce Paige KK5DO working on AMSAT's Strategic Plan.



### AMSAT OSCAR Echo Launch Campaign June 2004






Chuck Green, N0ADI with Echo enroute to Baikonur Echo (left) with UniSat-3 mounted on dispenser plate



### On Time Launch 6/29/2004 0630 UTC





Echo (in the foreground) mounted on the launch platform next to UniSat-3.



Dnepr LV (SS-18) launch from Baikonur Cosmodrome in Kazakhstan, 29 JUN 04



### AO-51 Mode as of 19:30 UTC



| ®  | Voice Up   | Voice Dn   | Beacon     | Digital Up  | Digital Dn  | Up Baud | Dn Baud |
|----|------------|------------|------------|-------------|-------------|---------|---------|
| 17 | 145.920 FM | 435.300 FM | 435.150 FM | 145.860 PBP | 435.150 PBP | 9600    | 9600    |

| Analog Uplink:      | 145.920 MHz   | FM       | (PL - 67Hz) |
|---------------------|---------------|----------|-------------|
|                     | 145.880 MHz   | FM QRP   | (no PL)     |
|                     | 1268.700 MHz  | FM       | (PL - 67Hz) |
| Analog Downlink:    | 435.300 MHz   | FM       |             |
|                     | 2401.200 MHz  | FM       |             |
| PSK-31 Uplink       | 28.140 MHz    | USB      |             |
| Digital Uplink:     | 145.860 MHz   | 9.6 Kbp  | s, AX.25    |
|                     | 1268.700 MHz  | 9.6 Kbp  | s, AX.25    |
| Digital Downlink:   | 435.150 MHz   | 9.6 Kbp  | s, AX.25    |
|                     | 2401.200 MHz  | 38.4 Kbp | s, AX.25    |
| Broadcast Callsign: | PACB-11       |          |             |
| BBS Callsign:       | PACB-12       |          |             |
| Launched            | June 29, 2004 |          |             |
|                     |               |          |             |



# AO-51 Analog Operating Techniques



- Listen to who is talking -Note the callsign
- Make a short call to this specific station
- Give your name, callsign, and gridsquare
- Have a means to record contacts
- Have patience-LEO satellites are busy, so it may take a few passes until you make a contact



Robin Haighton VE3FRH, Keith Pugh W5IU and Rick Hambly W2GPS at the 2004 Central States VHF Symposium, Toronto, ON July 2004



# AO-51 Digital Operating Techniques



# Digital mode

- » 145.860MHz up, 435.150MHz down at 9600 baud.
- » Store and forward bulletin board system (BBS) using PACSAT Protocol Suite.
- » Ground stations use WiSP or equivalent
- » Digital downlink will also contain telemetry.
- » Whole orbit data will be available for download.



Mike Seguin N1JEZ decoding AO-51 telemetry during the Central States VHF Conference, Toronto July 2004. Rick Hambly W2GPS is aiming the Arrow Antenna.



### SuitSat-1, A Unique Satellite

Excerpted with permission from Gould Smith WA4SXM





ISS012E15664 April 8, 2006

W2GPS

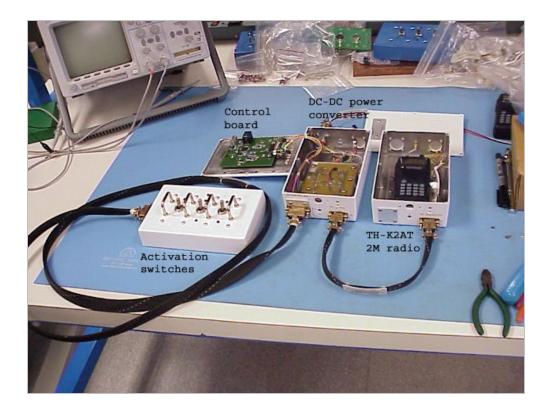


ARISS - A Joint NASA, AMSAT, ARRL Program



 SuitSat was proposed by Sergey Samburov at the International ARISS meeting in Washington, DC October 2004 to honor the 175th Anniversary of the Bauman Moscow State Technical University




W2GPS



### SuitSat Design



The U.S. ARISS group (AMSAT) designed and built the SuitSat controller, voice generator and switch box *in only* one month.





# SuitSat was adapted to the spacesuit and tested in Russia







W2GPS



### SuitSat flight hardware delivered to **ISS in September 2005**



**Cosmonaut Valery** Tokarev installs the hardware on the Orlan space suit





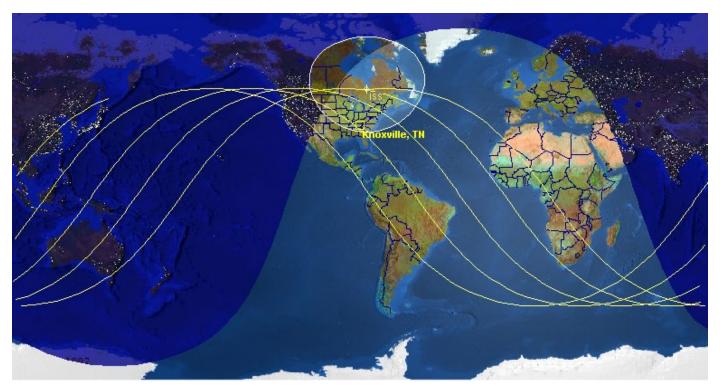
SuitSat launched from the **International Space Station** 3-Feb-06 and designated AO-54



The CD on SuitSat contained over 300 messages from students.






W2GPS



### SuitSat Orbit



The orbit will covered most of the populated areas of the earth. It was intended that many people would be able to listen to the SuitSat signal, during its' short lifetime.



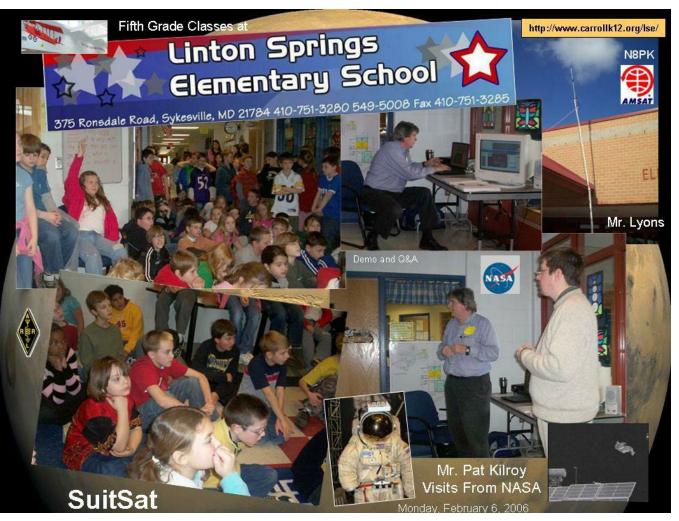
W2GPS



### Messages from SuitSat



- Voice telemetry (mission time, temperature, battery voltage)
- Russian message
- Europe student message (Spanish & German)
- Bauman Institute message in Russian
- Canada student message in French
- Mr. Alexandrov message in English
- Japan student message in Japanese
- USA student message in English
- SSTV picture transmission





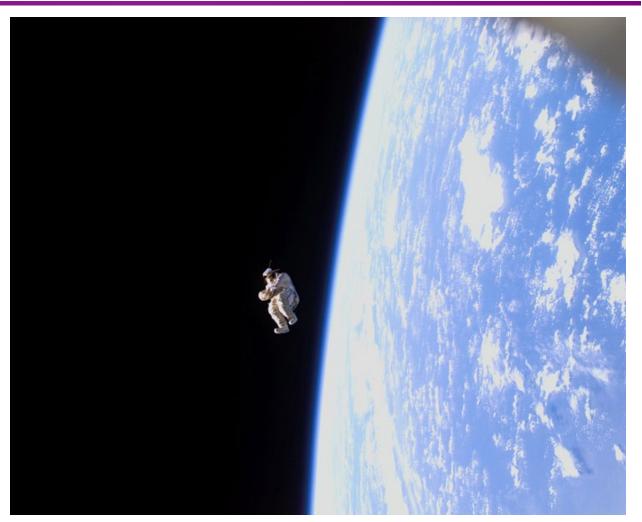

### Linton Springs Elementary School Eldersburg MD, February 6, 2006



Mr. Lyons and one hundred 5th graders welcome Mr. Pat Kilroy N8PK from NASA/AMSAT. A flier on "SuitSat", a demo, a lively Q&A session and a student video interview were the highlights of the morning at LSES on Monday, February 6, 2006.






### SuitSat-1: A Spacesuit Floats Free Credit: ISS Expedition 12 Crew, NASA



Dubbed Suitsat-1, the Russian spacesuit was fitted with a transmitter and was pushed out by the space station crew to orbit the Earth.

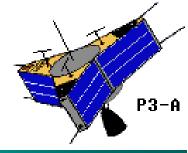
Suitsat-1 orbited once every 90 minutes until it burned up in the Earth's atmosphere within a few weeks.

The lifeless spacesuit was photographed as it drifted away from the space station.

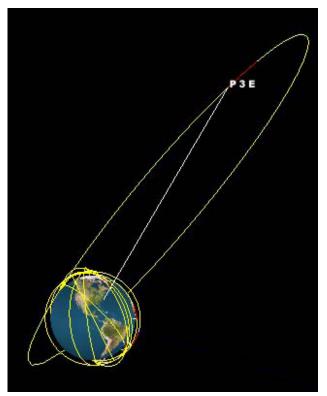




### SuitSat Telemetry by Richard Crow N2SPI

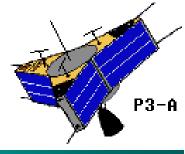



|      |        |         |       |          | SuitSat | t SuitSat    | SuitSat |                  |
|------|--------|---------|-------|----------|---------|--------------|---------|------------------|
|      | N2SPI  | Tele    | emet  | ry       | Mission | Temperature  | Battery | File name for    |
|      | Update | mess    | sage  | heard @: | Time in | in Degrees   | Voltage | source audio:    |
|      | Number | Mo      | Day   | Time UTC | Minutes | Celsius      | (Volts) | (".wav" file)    |
|      |        | <br>Feb | <br>8 | 13:49:41 | 006607  | 12           | 26      | 8Feb1340z telem  |
|      |        |         | -     | 12:37:29 |         |              |         | 9Feb1237z telem  |
| tole | 2      | Feb     |       | 06:39:29 |         |              | 26.7    | —                |
|      |        | Feb     |       | 07:04:41 |         |              | 26.7    | —                |
| IDR  | _      | Feb     |       | 11:50:53 |         |              |         | —                |
|      |        | Feb     |       | 05:52:34 |         | 14           |         | —                |
| Tur  | _      | Feb     |       | 04:39:57 |         |              | 26.6    | —                |
| MIR  |        | Feb     |       | 06:18:18 |         | 14           |         | —                |
|      | 8      | Feb     | 14    | 05:05:24 |         |              |         | —                |
|      | 9      | Feb     | 15    | 03:52:54 | 016040  |              | 26.5    | —                |
|      | 10     | Feb     | 16    | 04:18:32 | 049-    | 16           | 26.3    | 16Feb0411z telem |
| K    | 11     | Feb     | 17    | 03:05:45 |         |              | 25.2    |                  |
| 2    | 12     | Feb     | 17    | 10:59:42 | 03-9    | 15           | 18.3?   | 17Feb1057z_telem |
|      | Pass10 | Feb     | 18    | 01:49:30 |         | Nothing hea: | rd      |                  |
| a an | -      |         |       | 03:22:45 |         | Nothing Heat |         |                  |
|      |        |         |       | 04:58:30 |         | Nothing heat |         |                  |
|      |        |         |       | 06:34:30 |         | -            |         | ewell SuitSat-1! |
|      |        |         |       |          |         |              |         |                  |


Hear source telemetry audio at "www.aj3u.com".



### AMSAT-Phase 3E Satellite (P3E)



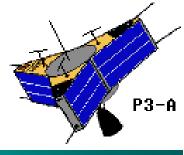

- Communication and scientific platform.
- High elliptical orbit.
- P3E is being created in a joint process together with the P5A Mars mission by an international team under leadership of AMSAT-DL.
- Continues the successful series of AMSAT-Phase-3 satellites.
- Technology test bench for the Mars mission.
- Launch is planned in 2006/7.





### P3E Meeting in Marburg Germany, January 29, 2005



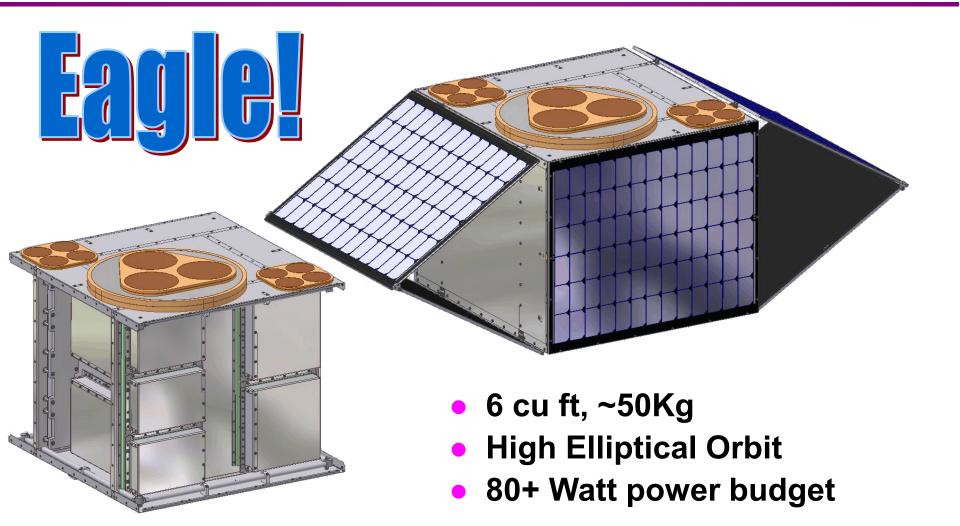

31



AMSAT-DL President Peter Guelzow DB2OS, AMSAT-NA President Rick Hambly W2GPS, Prof. Dr. Karl Meinzer DJ4ZC, and Hartmut Paesler DL1YDD examine the P3E spacecraft frame.  $_{\rm W2GPS}$ 

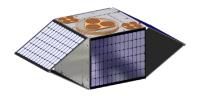


### P3E Proposed Frequency Chart




### AMSAT-Phase 3E Transponder Frequencies Analog Uplinks Analog Downlinks **RUDAK Downlinks** Band RUDAK Uplinks 10 M 29.500 +/- 5 kHz 145.845 - 145.945 145.837 - 145.837 2 M 70 cm 436.050 - 436.150 436.200 - 436.350 1268.775 - 1268.925 23 cm (1) 1268.600 - 1268.750 1260.100 - 1260.250 1260.275-1260.425 23 cm (2) 2400.275 - 2400.425 13 cm (1) 2400.600 - 2401.000 13 cm (2) 2450 +/- 50 kHz 6 cm 5668.600 +/- 25 kHz 10450 +/- 50 kHz X-Band K-Band 24048.300 +/- 25 kHz R-Band 47088.300 +/- 25 kHz




### AMSAT's Eagle Satellite Project







### Eagle's History

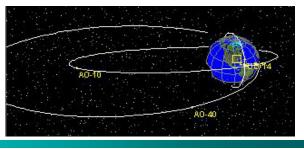


- "So You Want to Build a Satellite" by Dick Jansson WD4FAB presented at AMSAT's 18th Space Symposium in Portland Maine on Oct 28, 2000.
- Project Committee met July 14, 2001 in Denver, Colorado.
- Eagle Design Team met Sep 28, 2002 in Orlando FL.
- Eagle Design Team met the weekend of Jul 17, 2004 in Orlando FL.
  - » Key design parameters were chosen.
  - » Team leadership assignments were made.
- Eagle Design Team met Oct 7-9, 2005 in Pittsburgh PA.
- Eagle RF Design Team met Nov 26, 2005 in Princeton NJ.



### Eagle Requirements List




- 1 Introduction
- 2 Payloads
- 2.1 Transmitters
- 2.2 Receivers
- 2.3 GPS (NASA)
- 2.4 Camera Characteristics
- 2.5 Telemetry
- 2.6 Redundant, independent command uplinks shall reside in the U and L-band receivers

- 3 Structure and Physical Properties
- 3.1 Mass
- 3.2 Size
- 3.3 Stabilization
- 3.4 Orbit
- 3.5 Attitude Control
- 3.6 Propulsion
- 3.7 Structure
- 3.8 Magnetic Environment
- 3.9 Thermal Control

- 4 Power Generation and Energy Storage
  5 Housekeeping
  5.1 IHU-3
  5.2 CAN-Do!
  - Information Buss
- 6 Antennas
- 6.1 High Gain +Z Face
- 6.2 Omni Antennas, -Z Face
- 6.3 Omni Antennas +Z Face
- 7 Definitions



# Eagle's Specifications 1.0 Payloads



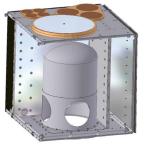
### **1.1 Transmitters**

- » V band using SDR techniques, BW 50 - 100KHz.
- » Two S-Band Tx, 100 KHz BW
- » C-Band wideband digital
- » All bands should be capable of being operated simultaneously

### **1.2 Receivers**

- » U band 100 KHz bandwidth. (SDR)
- » L band 100 KHz bandwidth. (SDR)
- » C band wideband digital.
- » Command uplink shall be on at least U and L-band receivers

### 1.3 GPS (NASA) 1.4 CEDEX (Surrey)


### 1.5 Cameras

- »Narrow Field of View +Z axis
- »Wide FOV on –Z axis
- »Cameras should survive all beta angles
- **1.6 Telemetry on all Tx's**

1.7 Redundant command uplinks in U and L Rx



Eagle's Specifications
2.0 Structure and Physical Properties



2.1 Mass »100Kg or less 2.2 Size

»Compatible with launcher

# **2.3 Stabilization**

»Spin stabilized

# 2.4 Orbit

»High apogee elliptical

# 2.5 Attitude Control

 »Magnetorquers and nutation dampers
 »Sensors (Sun and Earth)

# **2.6 Propulsion**

» Simplest system for desirable orbit. Modular.

### 2.7 Structure

 » As necessary to meet mission package.
 Accommodate the possibility of side mounting

# **2.8 Magnetic Environment**

» Magnetically clean as practically achievable



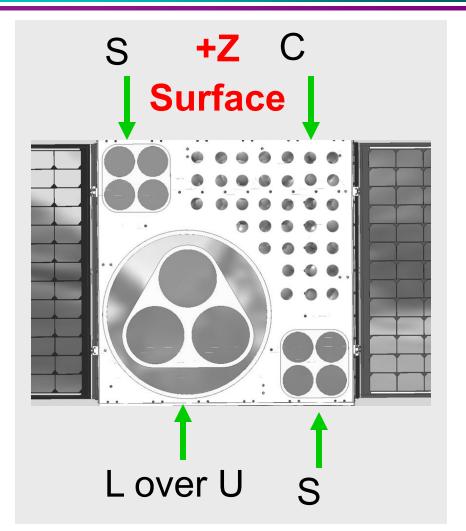
# Eagle's Specifications Other Specs



### 3.0 Thermal Control

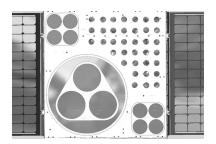
- » Battery temp ±15C.
- » Electronics -25 to +40C

### 4.0 Power Generation


- » 2 fixed + 4 solar panels.
- » Fault tolerant.
- » 10 to 14 volt buss, 100 Watt nom.

### 5.0 Housekeeping

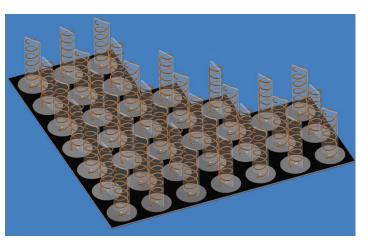
» IHU-3 and CAN-Do! buss


### 6.0 Antennas

- » 6.1 High Gain +Z for U, L, S and C
- » 6.2 Omni -Z for V, U, L and S
- » 6.3 Omni +Z U, L and S






### C-C Rider Antennas An Alternate Approach



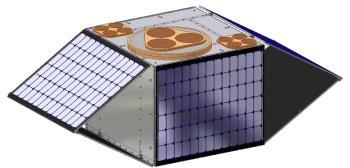
- Array of C band helical antennas
  - » Half RHCP for transmitting and
  - » Half LHCP for receiving.
- Have a proven assembly method, care of Lou McFadin.
- Half the elements but higher gain of the individual antenna element.
- Would halve the transmitter power and the power dissipation.

• ISSUES:

- » The two-wavelength-spaced elements may be too far apart for good performance.
- » Getting good beam-steering from gain antennas.
- The individual helical elements will need to be very carefully matched.





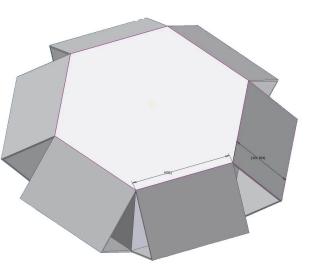



- **Chief Technical Officer:** Rick Hambly W2GPS (acting) Secretary: Stephen Diggs W4EPI Structure and Thermal: Dick Jansson WD4FAB Launch: Lee McLamb KU4OS (lead), Tom Clark W3IWI (Russian launches) Guidance and Control: Ken Ernandes N2WWD Sensors: Alan Bloom N1AL **Power Generation and Distribution:** Lou McFadin W5DID **Propulsion:** Stan Wood WA4NFY (lead), Daniel Schultz N8FGV, Ken Ernandes N2WWD
- Antennas: Stan Wood WA4NFY



Housekeeping: Bdale Garbee KB0G (data interface), Chuck Green N0ADI, Lyle Johnson KK7P (IHU-3) Antennas: Stan Wood WA4NFY

- Payloads: Bob McGwier N4HY, Daniel Schultz N8FGV, Tom Clark W3IWI
- GPS: Lou McFadin W5DID
- **CEDEX:** Robin Haighton VE3FRH
- **Cameras:** Gunther Meisse W8GSM
- Command and Control/Telemetry:
- Stephen Diggs W4EPI, Stacy Mills W4SM
- **Radiation Environment:** Steve Bible N7HPR






### Eagle Design Change Proposal by N4HY 26-Jan-06



- All the positive attributes of previous design, without the negatives.
- Huge power budget
  - » ß = 90°, Pg = 310.7W
  - » ß = 0°, Pg = 197.8W
- Largest dimension is 1200 mm (4 ft) Can be lifted by 3 people and carried through a door.
- Antenna space up from 0.36 m<sup>2</sup> to 0.98m<sup>2</sup>.
- It would never have to leave equatorial orbit.
- We can increase the digital transponder to 100w and have a LOUD linear downlink.
- WHAT VEHICLES CAN THIS BE FLOWN ON? How to fit the available envelopes?





### A Possible U.S. Launch Opportunity

# STP-X: Tomorrow's Configuration

- 28 small satellites
- 4 ESPA rings
- 3 ESPA interface adapters
- ESPA lid





### AMSAT Needs Your Help Join AMSAT!



- To achieve these goals AMSAT needs new members, volunteers and money.
- You can help:
  - » Volunteering to set up an AMSAT table at your local Hamfest
  - » Join the Field Operations team
  - » Encourage your Ham friends and Ham club members to join AMSAT
  - » Send an annual contribution to AMSAT.
  - » Give a presentation at your local Ham Club.
- Get information at www.amsat.org or call Martha in the AMSAT office at 301-589-6062.
- Contact any of your officers or Board members.
- Please help AMSAT reach its potential.



# 2006 AMSAT Space Symposium



- The 2006 Symposium will be held at the Crowne Plaza hotel in Foster City, October 6-8 2006
- Friday, Saturday and Sunday presentations and demonstrations
- General Membership Meeting on Friday
- Awards Banquet with keynote speaker on Saturday Evening
- Exciting Tours
- Door Prizes, Vendors and More!
- Sponsored by Project OSCAR

